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We introduce an alternative way to study molecular evolution within well-established Hamilton-Jacobi
formalism, showing that for a broad class of fitness landscapes it is possible to derive dynamics analytically
within the 1 /N accuracy, where N is the genome length. For a smooth and monotonic fitness function this
approach gives two dynamical phases: smooth dynamics and discontinuous dynamics. The latter phase arises
naturally with no explicite singular fitness function, counterintuitively. The Hamilton-Jacobi method yields
straightforward analytical results for the models that utilize fitness as a function of Hamming distance from a
reference genome sequence. We also show the way in which this method gives dynamical phase structure for
multipeak fitness.
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I. INTRODUCTION

Genome dynamics is an important problem in population
genetics �1–3� and in molecular evolution �4–9�. Many au-
thors investigated dynamics of evolution �10–13�. The Crow-
Kimura and the Eigen models are very popular in evolution
theory, describing quite well population genetics, the RNA
virus evolution, and artificial evolution of molecules. The
Crow-Kimura model describes an evolutionary process
where mutation and selection are two parallel processes and
describes mutations during the lifetime. The Eigen model
describes the case where mutations occur during the birth of
new viruses �molecules� and is quite realistic for the RNA
virus evolution. While an exact solution is known for a
simple case of single-peak fitness �14–16�, there has been no
success thus far in calculating exact dynamics for a general
fitness landscape. As in molecular evolution, there are nu-
merous attempts to solve this problem at least approximately
�10–13�. The fact is that evolution models are very subtle
mathematical objects and approximate solutions often give
misleading or inadequate results, especially in dynamics.
Finding exact dynamics for these two models is well known
to be still an open issue. In this article we introduce
Hamilton-Jacobi equations �HJEs� as a mean to resolve it.
These equations have been already applied in evolution
theory to investigate population genetics of virus evolution
with a finite population �17�. In Ref. �17� HJEs were applied
and solved approximately for linear fitness. Also, HJEs were
utilized in Refs. �18,19� to derive exact steady-state solutions
for evolution models with a general fitness. In this work we
show that it is possible to obtain exact dynamical solutions
of the Hamilton-Jacobi equations for the models where fit-
ness is defined in terms of the Hamming distance from a
reference �wild� sequence. The possibility of having analyti-
cal solutions that give the dynamics in a closed form is an
important breakthrough in the theory of biological evolution.

It allows the investigation of a plethora of evolutionary path-
ways within one consistent formalism. By mapping evolu-
tion model to Hamiltonian mechanics and looking at the cor-
responding potential, it is possible to derive phase structure
of the dynamics when exact dynamics are unavailable by
other means. We show here the way to precisely calculate the
movement of the maximum of the distribution for the popu-
lation originally localized at a fixed distance from a reference
sequence. This article is organized as follows. In Sec. II we
review the known results for the Crow-Kimura model, ana-
lyze its dynamics via HJE when population is initially local-
ized at some Hamming distance from a reference sequence,
and investigate the case when originally population is uni-
formly distributed across the sequence space. In Sec. III we
solve the dynamics of the Eigen model. Our results are dis-
cussed in Sec. IV.

II. THE CROW-KIMURA MODEL

A. Main known results

The 2N genome configuration sequences are defined as
chains of N spins sn, 1�n�N, that can take on only two
values sn= �1. The reference configuration has all spins +1.
The Hamming distance between a given configuration and
the reference configuration is �n�1−sn� /2=N�1−m� /2,
where m is an overlap. This model describes the dynamics of
probability distribution. We denote configuration i by Si
��si

1 , . . . ,si
N�. The state of the system is specified by 2N rela-

tive frequencies Pi ,1� i�2N:

dPi

dt
= �

j

AijPj − Pi�
j

Pjrj ,

Aij = �ijrj + mij . �1�

Here mij is the rate of mutation from configuration Sj to a
new configuration Si, and ri is the fitness. Two configuration
states have a Hamming distance dij = �N−�ksi

ksj
k� /2, and mii

=−�0N. When dij =1 then mij =�0 and mij =0 for dij �1 �4�.*saakian@yerphi.am
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For index i, the set of values 1� i�2N is equivalent to the
collection of N spins sk. Identifying f0�s1¯sN��ri, we de-
fine the mean fitness R:

R � �
i

Piri. �2�

The model defined here by Eq. �1� had been introduced in
Ref. �3� to describe the Drosphilla’s evolution in a multial-
lele model with simultaneously present mutation and selec-
tion processes. Because this model describes genetics of dip-
loid evolution in infinite population the random drift is
necessarily absent. The diploid evolution model of Ref. �3� is
described by an equation in analogy with Eq. �1� except that
ri are linear functions of pi. In the model of Ref. �4� our Eq.
�1� describes an infinite population asexual evolution when
there are either many alleles in one locus or many loci with
two alleles in each. The selection and mutation processes are
decoupled in Eq. �1�, i.e., our model describes selection and
mutation as parallel processes. This is different to a well-
known model introduced by Eigen �8,9�, where it is assumed
that mutations originate as replication errors on the occasion
of reproduction events. Nowadays the Eigen’s model is
widely applied to describe the virus evolution. The model of
Ref. �4� as well as the Eigen’s model �8,9� have been sug-
gested as molecular evolution models. Both “connected
mutation-selection” schemes of Refs. �8,9� and “parallel, de-
coupled” scheme of Ref. �4� are similar, giving similar pic-
tures of evolution with only a slight difference in dynamics
�e.g., see Fig. 1 in Ref. �15��. The difference between the
connected multi-selection scheme and the parallel mutation-
selection scheme of this work becomes transparent when
both models are treated by a quantum Hamiltonian approach
�4,14�: the parallel scheme is described in terms of Hermitian
Hamiltonian and the connected scheme is described in terms
of non-Hermitian Hamiltonian.

A value of R in steady state �dPi /dt=0� is the main target
of theoretical investigations. One can calculate R as maximal
eigenvalue of a matrix Aij �5,9�. The connection between the
Crow-Kimura model and quantum mechanics has been es-
tablished in Ref. �4�, where matrix −Aij has been identified
with the quantum Hamiltonian H for N interacting quantum
spins. One can calculate the maximal eigenvalue of the op-
erator −H �5,16� as

R = lim
�→�

ln Tr exp�− �H�
�

, �3�

where

− H = �0�
k=1

N

�	k
x − 1� + f0�	1

z
¯ 	N

z � , �4�

where 	k
z and 	k

x are Pauli matrices acting on the spin in the
kth position �16�. We are interested in symmetric-fitness case
with f0�s1¯sN��Nf��k=1

N sk /N�. For a symmetric fitness
function and permutation-symmetric initial distributions all
configurations at the Hamming distance l from the reference
sequence �selected with sn=1,1�n�N� have one value of
probability so the probability of selecting the entire class of

configurations is cpl. For symmetric fitness the mean fitness
is calculated as in Refs. �6,16,20�:

R

N
� k = max

−1�x�1
U�x� ,

U�x� = f�x� − 1 + �1 − x2. �5�

The maximum point of Eq. �5� occurs at x=xc. It follows
from Eq. �3� that xc can be interpreted as “bulk magnetiza-
tion” in analogy with other models of statistical mechanics
�4,5,20�:

xc = lim
�→�

Tr exp�− �H��k=1
N 	k

z

NTr exp�− �H�
.

Despite the lack of direct biological meaning, we need to
find xc to calculate the mean fitness. For symmetric fitness
function and permutation-invariant original distribution there
is a set of differential equations for �N+1� relative probabili-
ties pl, 0� l�N �5�:

dpl

dt
= pl�Nf	1 −

2l

N

 − N� + �N − l + 1�pl−1 + �l + 1�pl+1.

�6�

The probability of finding all configurations at the Hamming
distance l is pl /�kpk. Mapping of the system of nonlinear
equations �1� onto the system of linear equations �6� was
calculated in Refs. �21,22��. In Eq. �6� we omit p−1 and pN+1
for l=0 and l=N, and set �0=1. In biological applications a
magnetizationlike measure of surplus or surface magnetiza-
tion can be defined as

xm =

�
l

�1 − 2l/N�pl

� pl

. �7�

The main goal of this work is to calculate the dynamic of xm
from given initial distribution. Having the value of xc it is
possible to calculate the value of xm in steady state by solv-
ing

f�xm� = k . �8�

Various interpretations of bulk magnetization xc and surface
magnetization xm were analyzed in Refs. �5,20�. In the next
sections we solve the model for the dynamics and determine
explicit role of xc for various subphases in dynamics.

B. HJE for Crow-Kimura model

As in Ref. �18�, at a discrete x=1–2l /N we use the ansatz
pl�t�� p�x , t��exp�Nu�x , t��. Equation �6� can be then writ-
ten as Hamilton-Jacobi equation for u� ln p�x , t� /N �in Ref.
�18� we gave an equation for individual probabilities in the
sequence�

�u

�t
+ H�u�,x� = 0, �9�

where u�=�u /�x,
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− H�u�,x� = f�x� − 1 +
1 + x

2
e2u� +

1 − x

2
e−2u�, �10�

where the domain of x is −1�x�1, and the initial distribu-
tion is u�x ,0�=u0�x�. Equation �9� describes a class of prob-
abilities and the equation describing one sequence of prob-
abilities was given in Ref. �18�. In the limit of t→� the
asymptotic solution of Eq. �9� is

u�x,t;k� = kt + uk�x� , �11�

where uk�x� can be calculated from Eq. �9� �18� and the mean
fitness is Nk. Function U�x� in Eq. �5� has a simple physical
interpretation as potential, i.e., the minimum of −H�u ,v�
with respect to v at a fixed x: U�x�=minv�−H�v ,x��. It is well
known from mechanics that motion is possible on an interval
when energy of the system is larger than potential U�x� in-
side this interval. In the maximum-principle approach the
largest eigenvalue is identified with the mean fitness k. Simi-
larly, −k is the maximal energy of the Hamiltonian H�v ,x� in
Eq. �10�. A realistic hypothesis would be to assume that the
asymptotic solution u�x , t ;k� is stable against perturbations
only if k is calculated according to Eq. �5�. It is possible to
obtain more results even without solving the dynamics ex-
actly. We know from physics that motion in the potential that
has a single minimum is drastically different from motion in
the potential with two or more minima. Therefore, when in
Fig. 1 function U�x� changes from that depicted by the con-
tinuous line to that presented by the dashed line but for po-
tential well U�x� that has two maxima and two minima near
x=0 we should anticipate phase transition. Here, we focus on
the fitness f�x�=cx2 /2 �4� �the solid curve in Fig. 1 corre-
sponds to c=2�. It results from Eq. �5� that in this case U�x�
has two extrema located on the interval �−1; +1�: the mini-
mum at x=0, and the maximum at x=xm. To solve Eq. �2�
subject to these initial data we use a standard procedure
�23,24� by allowing one to reduce the corresponding partial
differential equation to a system of ordinary differential
equations. Namely, consider the following set of equations:

ẋ = Hv�x,v� = − �1 + x�e2v + �1 − x�e−2v,

v̇ = − Hx�x,v� = f��x� + �e2v − e−2v�/2,

u̇ = vHv�x,v� − H�x,v� = vẋ + q , �12�

subject to the following initial conditions: x�0�=x0, v�0�
=v0�x0�, u�0�=u0�x0�. Here, v=�u /�x, v0�x�=u0��x�, and q
=�u /�t. The corresponding solution of Eq. �12� in �x , t�
space is called the characteristic of Eq. �9�. Further, Eqs. �9�
and �12� imply q̇=0. Along the characteristic x=x�t� and
variable q is constant, so q is selected to parametrize these
curves. Using the equation q= f�x�−1+ �1+x� /2e2v+ �1
−x� /2e−2v, we transform the first equation in Eq. �12� into

ẋ = � 2��q + 1 − f�x��2 + x2 − 1. �13�

Having the solution of the characteristic system given by Eq.
�12�, we can derive the solution of the original Eq. �9� �24�
by integrating the equation u̇=vẋ+q. For biological applica-
tions it is important to know motions of distribution maxima.
For the purpose of finding these motions consider the follow-
ing initial distribution:

u0�x� = − a�x − x0�2. �14�

It is relatively easy to derive relaxation formulas for large
values of parameter a. We can calculate them directly from
Eq. �13�, using equation q�x* , t*�= f�x*� for the maximum
point location x*. The maximum of the distribution moves
along the branch of Eq. �13� that preserves the sign of x0. By
integrating Eq. �13� along the characteristic through the point
�x* , t*� and assuming that ẋ�t� does not change its sign, we
are getting

t* =
sgn x0

2


x*

x0 d


��f�x*� + 1 − f�
��2 + 
2 − 1
. �15�

If at some point x1 the characteristic x�t� changes its direc-
tion the point x1 can be determined from the condition

�f�x*� + 1 − f�x1��2 + x1
2 − 1 = 0. �16�

In the latter case the integrals should be summed up over the
intervals �x0 ,x1� and �x* ,x1�. This summation gives

t* =
sgn x0

2 	
x0

x1 d


��f�x*� + 1 − f�
��2 + 
2 − 1

+ 
x*

x1 d


��f�x*� + 1 − f�
��2 + 
2 − 1

 . �17�

Let T1 be such that for t�T1 Eq. �15� holds, and for t�T1
Eq. �17� holds. At T1 we have the condition

T1 =
sgn x0

2


X1

x0 d


��f�X1� + 1 − f�
��2 + 
2 − 1
, �18�

where X1 is a root of �f�X1�+1− f�x0��2+x0
2−1=0. For the

quadratic fitness f�x�=cx2 /2 with c�0 a selective phase ex-
ists at c�1. Then, xm=1− 1

c and xc=�1−c−2 �4�. When t
→� the maximum converges to x=xm. To define the dynam-
ics of the maximum at −xc�x0�xc we use Eqs. �15� and
�17�, where

x1 = sgn x0

�c2x*2 + 2�c − 1� − 2��c − 1�2 − c2x*2�1/2

c
.

0.2 0.4 0.6 0.8 1
x0

0.2

0.4

0.6

U(x)

FIG. 1. Function U�x�= f�x�+�1−x2−1 for f�x�=x2 �solid
curve� and for f�x�=4 exp�−8+8x� �dashed curve�. For the latter
there are two extrema where U��x�=0: the maximum at 0.9995 �it is
too high in is not shown in the graphics� and the minimum at 0.497.
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In the region where xc� �x0��1 we use Eq. �15�. To find
T1 in accordance with Eq. �18� we use

X1 = sgn x0�x0
2 −

2�1 − �1 − x0
2�1/2�

c
. �19�

Figure 2 shows the evolution of the maximum for c=2 for
x0=0 ,0.1,0.3,0.7,0.95. These results demonstrate the excel-
lent agreement of analytic solutions given by Eqs. �15� and
�17� with the results of the numerical integration of Eq. �6�.
Note, Fig. 2 shows that for x0�xm the maximum moves
initially away from the wild configuration and returns to its
neighborhood in later times. The minimal x*�t� is just X1. If
x*�t� describes the position of maxima then v�x*�t� , t�
= dv�x*�t�,t�

dt =0 and Eqs. �12� give

dx*�t�
dt

= − 2x*�t� −
f��x*�t��

uxx�x*�t�,t�
, x�0� = x0, �20�

where uxx�x , t�=�v /�x. The motion of the maximum of the
distribution either towards the wild sequence or in the oppo-
site direction depends on the sign of f��x*�t��
+2x*�t�u��x*�t� , t�.

C. The flat original distribution

When any of 2N configurations is uniformly populated
then the initial condition for the entire probability class, hav-
ing probability � N!

�N�1+x�/2�! �
1

2N , yields

u0�x� = −
1 + x

2
ln

1 + x

2
−

1 − x

2
ln

1 − x

2
. �21�

Solution �21� has a peak at x=0. Let us calculate threshold-
time T2 such that for t�T2 the population peak is in the class
of x=0. Assuming that at the moment t* the maximum is at
point x*, we solve Eq. �13� for the characteristic with end-
point �x* , t*� and, thus, take q= f�x*�. The related character-
istic curve starts at the point x�0�=x*, passes through the
point �x1 , t* /2� �x1 is computed from Eq. �16��, turns, and
finally reaches the point �x� , t� �. Thus, Eq. �16� gives

t* = sgn x*
x*

x1 d


��f�x*� + 1 − f�
��2 + 
2 − 1
. �22�

Now we take the limit as x*→0 and find the threshold time
T2. When f�x�=cx2 /2 and c�1 this time is

T2 = cos−1��1 − 1/c�/�c − 1. �23�

III. THE EIGEN MODEL

As shown in Refs. �5,6�, for 2N probabilities Pi there is a
set of equations

dPi

d�
= �

j=1

2N

QijrjPj − Pi��
j=1

2N

rjPj� . �24�

Elements Qij of the mutation matrix give the probabilities
that an offspring of configuration j belongs to configuration
i. In this model mutations are quantified by Qij =qN−d�i,j��1
−q�d�i,j� and �=N�1−q�, where exp�−���qN is the probabil-
ity of having exact copy, rj = f�1−2l /N� is the fitness, and l is
the Hamming distance of the jth configuration from the ref-
erence configuration. The Hamming distance between con-
figurations i and j �that have spins spins sn

i and sn
i , respec-

tively� is d�i , j�=�n�1−sn
i sn

j �. Considering again the �N+1�
Hamming-class probabilities pl for pl�exp�Nu�x , t�� and x
=1−2l /N, Eq. �24� of Ref. �18� has been mapped onto the
following equation:

�u

�t
= f�x�e��ch�2u��+xsh�2u��−1�, �25�

where �= tN. Asymptotic solutions u�x , t ;k�=kt+uk�x� �k is a
mean fitness �25�� in the limit of t→� are as follows:

k = max
−1�x�1

U�x�, U�x� = f�x�exp���− 1 + �1 − x2�� ,

�26�

where xc and xm are obtained from

U��xc� = 0, f�xm� = f�xc�exp�− ��1 − �1 − xc
2�� . �27�

When xc� �x0��1 then for initial distribution given by Eq.
�14� with a1 the position of the maximum �t� ,x� � is

t* =
sgn x0

2


x*

x0 d


f�x��	ln
f�x�
f�
�

+ �
2

− �2�1 − 
2�
.

�28�

For all other cases the solution is

t* =
sgn x0

2 �x0

x1 d


f�x*��	ln
f�x*�
f�
�

+ �
2

− �2�1 − 
2�

+ 
x*

x1 d


f�x*��	ln
f�x*�
f�
�

+ �
2

− �2�1 − 
2�� , �29�

where x1 can be calculated from the condition

0 1 2
t

0.5

0

0.1

0.3

0.7

0.951
0.95

0.7

0.5
x
0.2

0.1
0

0 1 2
t

FIG. 2. The dynamics of the maximum point x�t� for the Crow-
Kimura model �f�x�=x2� for different initial values x0 in the distri-
bution �14�. The continuous curves are analytic results of Eqs. �15�
and �17�. The symbols are the results of numerical solutions of the
Crow-Kimura model given by Eq. �6�, where N=1000.
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	ln
f�x*�
f�x1�

+ �
2

− �2�1 − x1
2� = 0. �30�

Finally, for relaxation from the flat distribution we get

t* = sgn x*
x*

x1 d


f�x*��	ln
f�x*�
f�
�

+ �
2

− �2�1 − 
2�
.

�31�

IV. DISCUSSION

We have considered discrete-error classes in continuum
approximation, replacing the system of equations for mo-
lecular evolution by a single Hamilton-Jacobi equation. Dy-

namics have been obtained by solving this equation. This
method is qualitatively similar to semiclassical methods,
well known in quantum mechanics. Our approach has an
accuracy of 1 /N, where N is genome length. There is
straightforward connection between our current method and
methods that utilize statistical-physics analogies with Ising
spins. Specifically, two different subphases that have been
determined with our method describe two different relax-
ation regimes �i.e., Eqs. �15� and �17� for Crow-Kimura’s
model and Eqs. �28�–�30� for Eigen’s model�. These two
relaxation regimes correspond exactly to two different mag-
netization values as discussed in Refs. �5–7�. Singularities xc
in relaxation periods correspond to bulk magnetization. Ini-
tially, when the entire virus population is in one genetic con-
figuration that is closer to the wild configuration than the
sequences with the same value of xc, the maximum in the
population distribution moves to the steady state xm. This is
in analogy with surface magnetization. On the other hand,
when the initial configuration is far away from xc, the maxi-
mum of the distribution moves away from the wild configu-
ration in the initial phase and moves towards xm in a later
phase. The single minimum at x=0 of the evolution potential
U�x� �i.e., Eq. �5� for Kimura’s model and Eq. �26� for
Eigen’s model� gives smooth dynamics �see Eqs. �15� and
�17�, Fig. 2, and Eqs. �28�–�30��. Equations �22� and �31�
give the evolution from the original flat distribution in the
Crow-Kimura and the Eigen models, respectively. These re-
sults are presented in Fig. 3 for several choices of fitness
function. Analytical dynamics of maximum-density points
x*�t*� is in excellent agreement with numerical solutions for
the original formulation of these models. The second phase
of the dynamics with a jump in the position of x*�t� �seen as
the dashed line in Fig. 3�a�� is related to the presence a
potential well �indicated by the dashed line in Fig. 1�. Pre-
liminary numerical studies of similar problems indicate the
existence of a similar phase with a jump that does not require
a potential well but a steep potential. The evolution dynamics
is a highly nontrivial phenomenon. As we demonstrated in
this work, even for monotonic and smooth fitness landscapes
it is possible to have discontinuous dynamics in analogy with
the punctuated evolution of Ref. �26� or the shock waves of
Ref. �27��. Such discontinuous dynamics for smooth fitness

TABLE I. Comparison of t2, the result of Ref. �20� for the
threshold time period in case of initially flat distribution, with T2,
our exact result by Eq. �23� for Crow-Kimura model with f�x�
=cx2 /2.

c 1.1 1.2 1.3 1.4 1.5 1.6

T2 2.397 1.791 1.466 1.252 1.098 0.980

t2 3.998 2.572 1.953 1.591 1.351 1.177

1

0.5

1 2 3t
0

0

x

1

1

20

1

0.5
x

1 20
0

t(b)

(a)

FIG. 3. Dynamics of maximum density points x*�t*� for the flat
initial distribution. �a� Crow-Kimura model where �i� f�x�=8x, �ii�
f�x�=x2, �iii� f�x�=x2+0.2x4, �iv� f�x�=4 exp�x−1�, and f�x�
=4 exp�−8�1−x�� �dashed line�. �b� Eigenmodel, where �=2 and �i�
f�x�=2�x+1�, �ii� f�x�=x2, and �iii� f�x�=exp�4x�. Continuous
curves are the analytical results. The symbols are the solutions of
numerical integration.

t

0.5

0.2

R(t)

0.4
0.3
0.2

0.1

0 0.4 0.6 0.8 1

0.6

FIG. 4. The dynamics of the mean fitness R�t� for the Crow-
Kimura model �f�x�=x� for different initial values x0=0.5 in the
distribution �14�. The symbols are the results of numerical solutions
of the Crow-Kimura model given by Eq. �6�, where N=1000. The
upper line is an approximate result by diffusion method, the lower
line is our exact result.
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function has been also found in Ref. �28�, where the dynamic
of the evolution model was investigated numerically for
four-valued spins. In the current article we suggest the ana-
lytical method to investigate discontinuous evolution for a
general fitness case. In Ref. �20� an analytic approximation
that would be accurate for large c have been suggested for
the dynamic of Crow-Kimura model. In Table I we compare
our exact result for T2 obtained from Eq. �23� with the cor-

responding expression derived by the method of Ref. �20�
�by setting �=1 in Eqs. �4� and �65� of Ref. �20��. Our
method gives the full distribution, while the method of Ref.
�20� gives the position of the distribution maximum. In sum-
mary, we considered HJE to obtain exact dynamics and used
Hamiltonian mechanics for qualitative analysis of evolution
models. Our results are valid for any analytic fitness func-
tion. The diffusion method of Refs. �10–13� is valid only
near the maximum of distribution or for the case of weak
selection, and yields inaccurate results when applied for long
relaxation periods or for calculating mean fitness. This yields
the error greater than 50% after t=0.2 �see Figs. 4 and 5�.
The HJE approach is self-consistent, with no need to use
genome length �which is in contrast to Refs. �10–13��, and
gives the dynamic with the 1 /N accuracy.

ACKNOWLEDGMENTS

We thank M. W. Deem, A. Kolakowska, A. Melikyan, L.
Peliti, S. Nazarian, and D. Waxman for discussions. D. B.
Saakian thanks the Volkswagenstiftung grant “Quantum
Thermodynamics,” U.S. Civil Research Development Foun-
dation Grant No. ARP2-2647-Ye-05, U.S. DARPA Grant No.
HR00110510057, National Center for Theoretical Sciences
in Taiwan and Academia Sinica �Taiwan�, Grant No. AS-95-
TP-A07.

�1� S. Wright, Genetics 16, 97 �1931�.
�2� S. Wright, Proc. Natl. Acad. Sci. U.S.A. 31, 382 �1945�.
�3� J. F. Crow and M. Kimura, An Introduction to Population Ge-

netics Theory �Harper Row, New York, 1970�.
�4� E. Baake, M. Baake, and H. Wagner, Phys. Rev. Lett. 78, 559

�1997�.
�5� E. Baake and H. Wagner, Genet. Res. 78, 93 �2001�.
�6� J. Hermisson, O. Redner, H. Wagner, and E. Baake, Theor

Popul. Biol. 62, 9 �2002�.
�7� E. Baake and H. O. Georgii, J. Math. Biol. 54, 257 �2007�.
�8� M. Eigen, Naturwiss. 58, 465 �1971�.
�9� M. Eigen, J. McCaskill, and P. Schuster, Adv. Chem. Phys. 75,

149 �1989�.
�10� L. S. Tsimring, H. Levine, and D. A. Kessler, Phys. Rev. Lett.

76, 4440 �1996�.
�11� F. Bagnoli and M. Bezzi, Phys. Rev. Lett. 79, 3302 �1997�.
�12� U. Gerland and T. Hwa, J. Mol. Evol. 55, 386 �2002�.
�13� W. Peng, U. Gerland, T. Hwa, and H. Levine, Phys. Rev. Lett.

90, 088103 �2003�.
�14� D. B. Saakian and C. K. Hu, Phys. Rev. E 69, 021913 �2004�.
�15� D. B. Saakian and C. K. Hu, Phys. Rev. E 69, 046121 �2004�.
�16� D. B. Saakian, C. K. Hu, and H. Khachatryan, Phys. Rev. E

70, 041908 �2004�.
�17� I. M. Rouzine, J. Wakeley, and J. M. Coffin, Proc. Natl. Acad.

Sci. U.S.A. 100, 587 �2003�.
�18� D. B. Saakian, J. Stat. Phys., 128 781 �2007�.
�19� K. Sato and K. Kaneko, Phys. Rev. E 75, 061909 �2007�.
�20� H. Wagner, E. Baake, and T. Gerisch, J. Stat. Phys. 92, 1017

�1998�.
�21� C. J. Thompson and J. L. McBride, Math. Biosci. 21, 127

�1974�.
�22� B. L. Jones, R. H. Enns, and R. S. Rangnekar, Bull. Math.

Biol. 38, 15 �1975�.
�23� L. C. Evans, Partial Differential Equations �American Math-

ematical Society, Providence, R. I., 1998�.
�24� A. Melikyan, Generalized Characteristics of First Order PDEs

�Birkhäuser, Boston, 1998�.
�25� D. B. Saakian and C. K. Hu, Proc. Natl. Acad. Sci. U.S.A.

103, 4935 �2006�.
�26� B. Drossel, Adv. Phys. 50, 209 �2001�.
�27� F. G. Carvalhaes and C. Goldman, e-print arXiv:q-bio.PE/

0508026.
�28� J. Hermisson, H. Wagner, and M. Baake, J. Stat. Phys. 102,

315 �2001�.

t

0.5

0.2

R(t)

0.4

0.3

0.2

0.1

0 0.4 0.6 0.8 1

FIG. 5. The dynamics of the mean fitness R�t� for the Crow-
Kimura model �f�x�=x2� for different initial values x0=0.5 in the
distribution �14�. The symbols are the results of numerical solutions
of the Crow-Kimura model given by Eq. �6�, where N=1000. The
upper line is an approximate result by diffusion method, the lower
line is our exact result.
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